关键词不能为空

当前您在: 首页 > 财经 >

股票中的盘中股票市场大盘指数与宏观经济指标分析

作者:admin
来源:http://www.ycssp0359.com/gupiao
日期:2020-10-18 06:16

股票四连阳-股票主力跟踪

2020年10月18日发(作者:夏侯湛)
计量经济学课程论文






股票市场大盘指数与宏观经济指标分析












专业:国际经济与贸易双语实验班
学号:40502017
姓名:房睿
指导老师:周游(统计学院)







2007年12月

1

内容摘要
通过对影响中国 股票指数的多个因素分析,总结出货币、经济增长等因素对股票的作用程度,
特别是在现在股票市场泡沫 严重的中国当代现状提出新的考察对象,可以帮助国家进行政策
决定以及股民理性投资。同时,在计量经 济学的学习中学会用模型以及计量分析来做到对实
际问题的分析。
关键词:股票 回归 计量模型 股票指数

问题的提出
从05年5月份开始,股权分置改革全面启 动。因价值回归和股改引发了深沪
股市的大幅上涨,股民们在被套多年之后终于看到了曙光,全年股指上 涨超过
100%。与股指暴涨同步,广大股民的收益也是不断攀升,开放式基金更是异常火
爆。 面对沪深两市历史新高一再被轻松改写的投资格局,我们必须保持清醒的头
脑。07年究竟是广大股民“ 黄金十年”的开始,抑或是现有股指的“末路狂奔”,
本文试图从影响股票指数的几个因素通过建立计量 经济模型来进行粗浅的分析


文献综述
Friedman.M对美国的 研究表明,货币供应量和货币流通速度均对股票市场
的波动具有较强的解释能力.Huang.R.D和 运用News模型对日本的
实证研究发现股价与货币供应量之间存在着正向关系,而对利率存在负向关系
和Werr Yao Ko对台湾的研究发现,股票收益率与利率存在着反向
变动关系.而与货 币供应量存在着正向关系,但二者关系在统计上并不具有较强
的显著性.Mooker.R和Qiao Yu对新加坡股市的研究发现,股价与货币供应量之
间存在着长期稳定的均衡关系,股价波动先于货币供 应量.
李红艳、江涛(2000)的研究结果表明,上世纪90年代中国股票市场价格与货
币 供应量之间存在长期均衡的协整关系.二者的因果关系中,股市价格主要处于
因方地位、货币供应量主要 处于果方地位.股票价格对非现金层次的影响要比现
金层次大.
周英章、孙崎岖(2002) 研究发现,从长期来看,股市价格和货币供应量二者在
统计上是高度相关的,股市价格对货币供应量的影 响比较显著,而货币供应量对
股市价格的推动作用则相对较弱.
孙华妤、马跃(2003)应 用动态滚动式的VAR方法,研究结论为各层次的货币
供应量对股市都没有影响.
国外学者所 作的实证研究大多建立在一个相对完善的金融市场,而我国是一
个转轨过程中的发展中国家,股票市场存 在时间不长,而且具有市场主体大多为
国有等特点,所以在这项课题的研究上,我国学者的研究成果更具 有参考价值.
然而目前国内学者对股市价格与货币供应量关系的研究基本上是建立在逻辑推
理 和规范分析之上的,定量分析很少,而且为
数不多的定量分析也是值得商榷的.传统的经济计量方法研 究股市价格与货币供
应量之间的关系存在着动态的稳定性假设,实际上经济时间序列通常是非平稳的,< br>直接运用变量的水平值研究经济现象间的相关关系容易导致谬误结论.再有就是
常用的格兰杰因果 检验的滞后期选择具有很大的任意性,而事实上该检验对滞后
期的选择非常敏感.国内的学者通常
忽视了这类的问题.
2

变量的选取和分析
1、货币政策与股票市场关系的理论分析
当中央银行实行扩张性的货币政策时,作为主要中介 目标的货币供给量增加,
人们所持有的货币量增加.通常在这种情况下,人们会增加非货币资产的持有量 .
若人们选择购买股
票,那么股票市场便会出现供少于求,股票价格走高.扩张性货币政策刺 激经济增
加,企业盈利,人们对股票价格上升的预期增强,从而增加股票的持有量,股价被
持续 拉高. 货币供给量的增加便随着利率水平的下降,人们会在无风险资产(现
金、银行存款等)和有风险 资产(股票等)之间进行资产的再分配,减少无风险资
产,增加有风险资产的持有量。在这样的情况下, 股票价格同样会被拉高。概括
地讲,当中央银行实行扩张性货币政策时,股票价格便会出现走高的趋势。
股票价格会通过以下四种渠道影响货币政策的最终目标。(1)投资渠道。托
宾的“q ”理论认为股票价格上涨会使q值提高,即公司市值相对于其资本重置成
本提高,若q值大于1
时,公司市值大于重置成本.此时,公司可以较高的价格发行较少的股票,融通更
多的资金,扩大投资 ,进而拉动总需求与产出的扩大,推动经济增长.(2)财富效用
渠道.股价的提高使得持有股票的人们 财富增加,进而人们会增加当期和未来消
费,从而刺激总需求和产出的增长,推动经济增长.(3)信用 渠道.股价上升的,使
得企业财富升值,企业借款能力增加,带动了企业投资,总需求和产出扩大,经济
增长.(4)流动性渠道.股价上升,人们会认为持有无风险资产的机会成本增加,所
以在增加 股票等有风险资产的持有量的同时,人们也会增加耐用消费品的支出,
拉动总需求和产出,刺激经济增长 .
2、股票市场与GDP
从经济学的角度看GDP是实体经济,而股市是由GDP 派生出来的虚拟经济,
后者依赖前者而生存,而前者对后者有决定性的影响。从数学观点看GDP是母体 ,
而股市是这个母体派生瓶中,它具有母体的一些主要特征,但是派生物也有其与
母体不同的个 性。
在国外,大盘指数与GDP的长期相关性较高。我国由于种种原因,前些年二者
的相关性不是很高,但近两年二者的相关性逐步提高。随着证券市场的市场化程
度的提高和国有企业改革 的深入,指数与GDP的相关性将会进一步提高,这是一
个长期的必然趋势。因此,指数的成功也就离不 开经济的增长。而指数化投资的
成功依赖于两点:一是市场有效性的不断提高,利润的平均化进程加快; 另外一
点就是宏观经济的长期向好。
3、股票市场成交量和成交额
成交量是指某一 特定时期内(报纸公布的是前一日一个交易日的),在交易
所交易市场成交的某种股票的数量,其单位某 种股票的的股数计算。
成交额是指某一特定时期内(同上),在交易所交易市场成交的某种股票的金额,其单位以人民币“元”计算。
这两个概念其实是一码事,只是表现形式不同,我们可以将买 者买进股票算
成交金额,卖者卖出股票成交数量。这两个数字大,说明股票交易活跃,换手率
大 ,如数字小,说明交易平淡。
成交量和成交额水平代表了价格运动背后多空双方竞争的激烈程度,它能 帮
助图表分析师很好的估量多空双方的实力。因此带有巨大成交量的交易时段往往
代表着重要的 意义。并且这两者与股票市场的大盘指数高度相关。
3

数据及处理

上证收盘综
合指数_当月货币(M1)_
月末数
(-) (亿元)
上交所股票成交
额_当月数
(亿元)
上交所股票成交量_
当月数
(亿股)
工业企业增加值
(当年价格)_当月
(亿元)


2005-05
2005-06
2005-07
2005-08
2005-09
2005-10
2005-11
2005-12
2006-01
2006-02
2006-03
2006-04
2006-05
2006-06
2006-07
2006-08
2006-09
2006-10
2006-11

1060.74 95801.30
1080.94 98601.25
1083.03 97663.11
1162.80 99377.70
1155.61 100964.00
1092.82 101751.98
1099.26 104125.78
1161.06 107278.57
1258.05 107250.68
1299.03 104357.08
1298.30 106737.08
1440.22 106389.11
1641.30 109219.22
1672.21 112342.40
1612.73 112653.04
1658.64 114845.67
1752.42 116814.10
1837.99 118359.96
2099.29 121644.95
876.84
1837.25
1316.76
2815.36
2514.13
1279.61
1352.75
1358.29
2218.59
2295.47
2498.09
4359.60
6690.44
5585.01
5018.81
3424.46
4272.24
4325.52
6883.92
181.13
386.29
306.37
636.46
546.07
267.46
314.91
296.67
451.80
466.72
502.85
826.15
1156.36
985.98
857.61
631.75
782.44
802.11
1193.35
5701.57
6191.38
5810.95
5967.51
6275
6319.93
6590.16
6712.43
5639.61
5473.1
6679.7
6819.8
7059.9
7817.8
7199.8
7355.5
7754.1
7601.37
7936.3
1、 数据来源于中国证监会网站和中经网数据中心。
2、 经过多次建立模型和回归分析后,发现M1与股 票市场相关度最高,最能说明股市
的变动,故用M1代表货币供给量。
3、 从2004年开 始,我国GDP值经过修正,与以前的数值不能相对比较,且国家统计
局只公布季度数据。经过众多文献 查阅,均以工业企业增加值代表GDP值的变动,
故用工业企业的增加值替代GDP的增加。







4

模型及处理
设Y是上证收盘综合指数,X1货币供给量(M1),X2是上交所股票成交额,X3
是上交所 股票成交量,X4是工业企业增加值。建立多元线性回归方程为:
Y=β0+β1X1+β2X2+β3X3+β4X4+ut

时间序列的平稳性检验
因为选用的数据是时间序列,首先对序列进行平稳性检验。
对各单个序列x1.x2.x3.x4.y画图如下:
125000
120000< br>115000
110000
105000
100000
9500005M0705M1006M0106M0406M0706M10
X1
7000
6000
5000
4000
3000
2000
1000
0< br>05M0705M1006M0106M0406M0706M10
X2

14 00
1200
1000
800
600
400
200
0
05M0705M1006M0106M0406M0706M10
X3


5

8000
7500
7000
6500
600 0
5500
5000
05M0705M1006M0106M04
X4
2200
2000
1800
1600
1400
1200
1 000
05M0705M1006M0106M04
Y
06M0706M10
06M0706M10


通过分析图形,我们选择对x1.y两个序列进行带趋势和 截距项的ADF检验,对
其他x2.x3.x4序列进行ADF检验。检验结果如下:
Null Hypothesis: X1 has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Fixed)



















t-Statistic


-1.524383
-4.616209
-3.710482
-3.297799







Prob.*


0.7794








Augmented Dickey- Fuller test statistic
Test critical values:


1% level
5% level
10% level


*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 17

Null Hypothesis: X2 has a unit root
Exogenous: Constant
Lag Length: 1 (Fixed)












6






t-Statistic


-0.793380
-3.886751




Prob.*


0.7953



Augmented Dickey-Fuller test statistic
Test critical values: 1% level


5% level
10% level




-3.052169
-2.666593









*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 17

Null Hypothesis: X3 has a unit root
Exogenous: Constant
Lag Length: 1 (Fixed)




















t-Statistic


-0.948939
-3.886751
-3.052169
-2.666593







Prob.*


0.7462








Augmented Dickey-Fuller test statistic
Test critical values:


1% level
5% level
10% level


*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 17

Null Hypothesis: X4 has a unit root
Exogenous: Constant
Lag Length: 1 (Fixed)




















t-Statistic


-0.768060
-3.886751
-3.052169
-2.666593







Prob.*


0.8025








Augmented Dickey-Fuller test statistic
Test critical values:


1% level
5% level
10% level


*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 17

Null Hypothesis: Y has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Fixed)













7






t-Statistic


-1.377097
-4.616209
-3.710482



Prob.*


0.8298




Augmented Dickey-Fuller test statistic
Test critical values:

1% level
5% level
10% level


-3.297799








*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 17


因为各序列t统计量都比三个临界值大,故他们都没有单位根,都是平稳的,故
整个 方程也是平稳的。

最小二乘法回归
用Eviews回归分析后得:
Dependent Variable: Y
Method: Least Squares
Date: 120607 Time: 22:07
Sample: 2005:05 2006:11
Included observations: 19
Variable
C
X1
X2
X3
X4
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Coefficient
-1608.833
0.026774
0.109945
-0.227622
-0.012146
Std. Error
357.0081
0.004646
0.089594
0.531447
0.044458
t-Statistic
-4.506433
5.762503
1.227148
-0.428306
-0.273202
Prob.
0.0005
0.0000
0.2400
0.6749
0.7887
313.2388
11.53220
11.78074
88.76049
0.000000
0.962064 Mean dependent var 1392.971
0.951225 S.D. dependent var
69.17895 Akaike info criterion
67000.18 Schwarz criterion
-104.5559 F-statistic
0.916004 Prob(F-statistic)
由上表可见:模型的可决系数和修正可决系数很高,F检验也很 显著,但是X2、
X3、X4的t检验不显著,且X3和X4的系数符号与与其相反,这表明可能存在< br>比较严重的多重共线性。
计算各解释变量间的相关系数得:

X1
X2
X4
X1
1
0.7568604748
X2
0.7568604748
1
X3
0.736847770747
0.994496698257
1
X4
0.8669363827
0.764808778388
0.745371625885
1
X3 0.736847770747 0.994496698257
0.8669363827 0.764808778388 0.745371625885
由简单相关系数检验法知:X2与X3之间、X1与X4 之间的相关系数均大于0.8,
说明的确存在严重的多重共线性。

多重共线性的修正
使用逐步回归法,分别作Y对X1、X2、X3、X4的一元回归,得:
8

变量
参数估计值
t统计量
可决系数R
2

修正可决系数
X1
0.039789
11.43923
0.885023
0.87826
X2 X3
0.149764 0.907201
8.166091 7.48036
0.796857 0.766982
0.784908 0.753275
X4
0.341888
6.821403
0.732416
0.716676
可见:X1的
R
2
=0.87826最大,所以 以X1为基础,谁次加入其它变量逐步回归,
得:
X1 X2 X3 X4 修正可决系数
X1、X2 0.026251 0.07095
t统计量 8.261083 5.628691 0.956596
X1、X3 0.027339 0.413806
t统计量 8.525381 5.268585 0.952704
X1、X4 0.03385 0.064706
t统计量 4.845002 0.980523 0.877983
经比较:新加入X2后修正可决系数最显著,且t检验也显著。所以再以X1、X2
为基础,顺次加入其它变量,得:
X1 X2 X3 X4 修正可决系数
X1、X2、X3 0.025927 0.106368 -0.21386
t检验量 7.73005 1.238929 -0.4173 0.954234
X1、X2、X4 0.02699 0.072055 -0.01034
t检验量 6.009311 5.727857 -0.24028 0.95388
经比较:加入X3和X4后修正可决系数并 未显著提高,更糟糕的是两者的参数估
计值符号为负,违背经济意义,且t检验也通不过。
综 上对多重共线性的修正:X3和X4的引入会带来严重的多重共线性,必须删除。
则剔除后解释为X1、 X2。

异方差的修正
经过剔除变量后,模型变为:
Y=β0+β1X1+β2X2+ut
使用White检验,得:
White Heteroskedasticity Test:
F-statistic
Obs*R-squared

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 1207207 Time: 22:57
Sample: 2005:05 2006:11
Included observations: 19
Variable
C

2.962571 Probability
10.11921 Probability

0.053187
0.071927

Coefficient
491050.8
Std. Error
407620.4
9
t-Statistic
1.204677
Prob.
0.2498
X1
X1^2
X1*X2
X2
X2^2
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
-9.800629
5.04E-05
-0.000247
16.42543
0.001169
8.238866
4.17E-05
0.000246
23.64322
0.000506
-1.189560
1.209387
-1.006582
0.694721
2.308538
0.2555
0.2480
0.3325
0.4995
0.0381
4334.685
19.40365
19.70189
2.962571
0.053187
0.532590 Mean dependent var 3586.282
0.352817 S.D. dependent var
3487.153 Akaike info criterion
1.58E+08 Schwarz criterion
-178.3347 F-statistic
1.875331 Prob(F-statistic)
从上表中可以看出:n R2=10.11921, 给定?
?0.05
,在自由度为5下,查卡方
分布表,得临界值为11.0705,因 为n R2<11.0705,所以不存在显著的异方差。

自相关的修正
用Eviews对Y=β0+β1X1+β2X2+ut进行回归得

Dependent Variable: Y
Method: Least Squares
Date: 120507 Time: 23:15
Sample: 2005:05 2006:11
Included observations: 19
Variable
C
X1
X2
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Coefficient
-1647.812
0.026251
0.070950
Std. Error
311.4392
0.003178
0.012605
t-Statistic
-5.290959
8.261083
5.628691
Prob.
0.0001
0.0000
0.0000
313.2388
11.33854
11.48766
199.3555
0.000000
0.961419 Mean dependent var 1392.971
0.956596 S.D. dependent var
65.25879 Akaike info criterion
68139.35 Schwarz criterion
-104.7161 F-statistic
0.944897 Prob(F-statistic)
从上表可得:回归方程的可决系数很高,t检验和F检验均能通 过,其中
DW=0.944897,给定0.05的显著性水平,样本量为19,两个解释变量,查DW 统
计表可知:dL=1.074,dU= 1.536。由于DW=0.944897< dU,所以存在自相关
使用广义差分法修正模型的自相关
用Eviews的随机误差项的一阶自回归形式为

Dependent Variable: E
Method: Least Squares
Date: 120207 Time: 23:24
Sample(adjusted): 2005:06 2006:11
Included observations: 18 after adjusting endpoints
10

Variable
E(-1)
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Coefficient
0.394169
Std. Error
0.194185
t-Statistic
2.029860
Prob.
0.0583
0.179611 Mean dependent var -7.301581
0.179611 S.D. dependent var
49.07531 Akaike info criterion
40942.57 Schwarz criterion
-95.10688 Durbin-Watson stat
54.18176
10.67854
10.72801
1.925573
即有:e
t
=0.394169e
t-1

对广义差分方程
Y-0.394169Y(-1)=β0(1-0.394169)+β1 [X1-0.394169X1(-1)]+β2[X2-0.39416
9X2(-1)]+ut
进行回归分析得:
Dependent Variable: Y-0.394169*Y(-1)
Method: Least Squares
Date: 1208207 Time: 23:33
Sample(adjusted): 2005:06 2006:11
Included observations: 18 after adjusting endpoints
Variable
C
X1-0.394169*X1(-1)
X2-0.394169*X2(-1)
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Coefficient
-1199.854
0.029363
0.066626
Std. Error
214.6284
0.003477
0.011436
t-Statistic
-5.590378
8.445010
5.826031
Prob.
0.0001
0.0000
0.0000
209.9939
10.82971
10.97811
139.9368
0.000000
0.949131 Mean dependent var 877.8292
0.942348 S.D. dependent var
50.42119 Akaike info criterion
38134.45 Schwarz criterion
-94.46741 F-statistic
2.136170 Prob(F-statistic)
可见:DW已经有明显的改进,大于1.536;另外可决系数、t统计量和F统计量
也达到理想水平 ,由此可得,模型修正后不存在自相关。
β0=-1199.854(1-0.394169)=-1980.5094
所以: Yt=-1980.5094+0.029363X1t+0.066626X2t
(214.6284) (0.003477) (0.011436)
t= (-5.590378) (8.445010) (5.826031)
R2 = 0.949131,F =139.9368,d f = 19,DW = 2.136170


对滞后性的修正
用Eviews对分别对X1和X2的滞后性进行检验得:
Dependent Variable: Y
Method: Least Squares
Date:120907 Time: 15:13
Sample(adjusted): 2005:12 2006:11
11

Included observations: 12 after adjusting endpoints
Variable
C
X1
X1(-1)
X1(-2)
X1(-3)
X1(-4)
X1(-5)
X1(-6)
X1(-7)
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Coefficient
-5254.351
0.007699
0.015111
0.001257
-0.009403
0.004509
0.039686
0.015673
-0.010673
Std. Error
280.3542
0.005999
0.007662
0.007399
0.007306
0.007256
0.007237
0.007518
0.005946
t-Statistic
-18.74183
1.283349
1.972275
0.169853
-1.287042
0.621383
5.483910
2.084785
-1.794940
Prob.
0.0003
0.2895
0.1431
0.8759
0.2884
0.5784
0.0119
0.1284
0.1705
0.996700 Mean dependent var 1560.937
0.987899 S.D. dependent var
30.36473 Akaike info criterion
2766.050 Schwarz criterion
-49.66888 F-statistic
2.936976 Prob(F-statistic)
276.0278
9.778146
10.14183
113.2488
0.001237
注:此处只列出了对滞后7期的数据,其他滞后期的检验与以上结果相同。
从上表中可以看出 ,X1的第5期对模型检验显著,说明X1对模型有显著影响。
所以在模型中加入X1(-5),则模型 变为:
Y=β0+β1X1+β2X2+β3X1(-5)+ut
用Eviews进行回归得:
Dependent Variable: Y
Method: Least Squares
Date: 120907 Time: 16:24
Sample(adjusted): 2005:10 2006:11
Included observations: 14 after adjusting endpoints
Variable
C
X1
X2
X1(-5)
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Coefficient
-3652.629
0.023216
0.035384
0.023691
Std. Error
520.4188
0.004290
0.013855
0.008512
t-Statistic
-7.018633
5.411561
2.553829
2.783294
Prob.
0.0000
0.0003
0.0287
0.0193
304.9126
10.34574
10.52833
276.3003
0.000000
0.988080 Mean dependent var 1494.523
0.984504 S.D. dependent var
37.95698 Akaike info criterion
14407.33 Schwarz criterion
-68.42018 F-statistic
2.026124 Prob(F-statistic)
所以:Yt=-3652.629+0.023216X1t+ 0.035384X2t+0.023691X1(t-5)
(520.4188) (0.004290) (0.013855) (0.008512)
t= (-7.018633) (5.411561) (2.553829) (2.783294)
R2 = 0.988080,F =0.984504, DW =2.026124
12

可以看出,模型的拟合良好,可决系数和修正可决系数提高,t检验和F检验都
很显 著,DW值也显示不存在自相关。至此,对模型的修正结束。
从模型的结果来看:在一定范围内,货币 供给量M1每增加1亿人民币,对指数
有0.023216点的贡献;股票的成交额每增加1亿人民币, 对指数有0.0353384
点的贡献。可见宏观货币的供给与市场的活跃度的确与大盘指数存在着正向 的相
关关系。

结论及政策建议
从以上对模型的分析中,可以看出上证指 数与货币供给量M1和股票的成交
金额存在着高度的正相关关系。对于股票的成交量,实际上与大盘指数 也是有很
高的相关性的,只是因为与股票成交金额存在较严重的多重共线性而不得不剔
除。对于 替代GDP的工业企业增加值,与大盘指数相关性不高,这可能与我国股
票市场进入了一个疯狂的发展期 有关;在国外那些发达国家成熟的股票市场上,
两者之间存在着高度的相关性,由此看出,我国的市场还 不成熟,对资本市场的
完善任重而道远。另外,对于另外一个重要的宏观经济变量——利率,如果引入< br>模型,甚至违背了经济理论,我们的解释是:中国的流动性过剩严重,即使调高
利率也无法阻止资 金进入股票市场,在政府监管部门与众多投资者的博弈中,投
资者们或是因为金融素质低下,或是因为预 期过于乐观,造就了如今这个非理性
的市场。
政府可通过对市场制度进一步完善,提高投资者 对宏观政策的敏感度;在股
票市场过热的时候,可以考虑降低货币供应量,来调控市场。相信在多方的努 力
下,我国的股票市场将逐渐完善,走向成熟。
13

股票只能买-凡利亚股票


集合竞价怎么买股票-技术型股票


开心老师股票-股票标红6


特来电股票代码-股票双头形态怎么操作


多账户股票-华诺环保股票


私人股票-股票突然腰斩


股票统计-股票的说法


股票交易暗号-分买股票吗



本文来自网络,不代表本网站立场,转载请注明出处:http://www.ycssp0359.com/gupiao/2007.html

你可能关注的内容

  • 论我国股票期权制度的本质及其制度条件

    2900-太农药业股票 2020年11月25日发(作者:卓晚春) 论我国股票期权制度的本质及其制度条件 陶金 【摘要】@@ 所谓股票期权制度是指公司授予激励对象一种的权利,激励对象可以 在规定的

    财经
  • 证券投资学习题附答案

    600405动力源-吕建锋股票 2020年11月25日发(作者:梅超英) 霍文文 编著:证券投资学(第三版),高等教育出版社 2013 导 论 一、判断题 1.收益的不确定性即为投资的风险,风险的大小与

    股市
  • 金融的本质就三句话

    股票600589-河北概念股票 2020年11月25日发(作者:薛光军) 金融的本质就三句话 首先,说说金融的本质。就是三句话: 一是为有钱人理财,为缺钱人融资; 二是信用、信用、信用,杠杆、

    股市
  • 简单分析关于金融市场的本质是怎样的.

    5g概念股-盛迅股票 2020年11月25日发(作者:薛真) 关于金融市场的本质是怎样的问题分析:有人把炒股当成了兼职,特别是在疯牛 市的日子,天天在家里画K线图研究股票。 金融市场本身到底

    股市
  • 试谈股票的本质(doc 12页)

    159920-马刚股票行情 2020年11月25日发(作者:温肇桐) 试谈股票的本质(doc 12 页) 股票的本质 毕业后就来到这家机构,沉浮了这么些年,心中的感觉就像标题 所示。但也留下了一些观感,看

    财经
  • 大智慧股价排行榜快捷键

    光力科技-股票有评级吗 2020年11月25日发(作者:束沛德) 〖F1〗:个股成交明细表〖Alt+D〗:除权标记 〖F2〗:个股分价表〖Alt+H〗:当前帮助 〖F3〗:上证领先〖Alt+I〗:信息地雷标记 〖F4〗:深证

    股市